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cells. Indeed, a discovery by the Human Microbiome 
Project (HMP) in 2007, was launched to identify and 
characterize microbes present in various parts of the 
body (2, 3). 

The communities living in different locations in 
the body are by no means uniform but vary greatly 
in their composition. Historically, the detection and 
characterization of skin germs has relied on their 
culture by pre-washing swabs from its surface. In 
using DNA sequencing techniques to detect and 

The integumentary system is the largest organ 
in the human body and acts as a natural barrier to 
prevent the entry of pathogens from the external 
environment by participating in the regulation of the 
hydro electrolytic balance, temperature and other (1). 
At the same time, the skin has a complex and dynamic 
ecosystem inhabited by thousands of germs including 
bacteria, archaea, fungi, and viruses. On about 2m2 
of skin surface, about 1 million bacteria live per 
square centimeter for a total of over 1010 bacterial 
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secretory and reactive sweat glands). The dominant 
skin cells are the collagen-producing fibroblasts. In 
addition to fibroblasts, there is a large population 
of other cell types such as mast cells, monocytes, 
macrophages, T lymphocytes, and dendritic cells. 
Finally, Hypodermis layer, lies deeper and consists 
mainly of adipose and connective tissue (7).

Hair follicles sweat glands and sebaceous glands 
are skin structures that penetrate the skin. There are 
two types of sweat glands: Eccrine and Apocrine. 
The eccrine glands, which are distributed almost 
throughout the human body, present in various 
numbers (the highest density in the palms, soles of 
the feet and head, much less on the trunk and limbs) 
and have pores that are directly open to the skin. Its 
water-based secretion (directly to the surface of the 
skin) is useful for cooling the body and thus, they 
play an essential role in thermoregulation with the 
evaporation (8). Also contains salt and electrolytes 
which contribute to skin acidification. Overall, the 
result of this process is the creation of a cool, dry 
and slightly acidic environment. This environment 
is not very conducive to microorganisms and plays 
an important role in reducing germs that can survive 
and multiply on the skin. The sweat glands are 
therefore actively involved in the innate immunity of 
the host with the produce molecules of antimicrobial 
peptides (AMPs) (7, 8).

The apocrine glands, which are present from 
birth, are activated after adolescence and have a more 
limited distribution, mainly found in areas such as the 
axillae, under the breasts (and around the nipples), 
genitals and perianal area. These glands secrete their 
contents, an odourless fatty blend of proteins, lipids 
and steroids, into the hair follicles (7, 9).

The sebaceous glands are small releasing exocrine 
glands in the epidermis connected to the hair follicles 
near the top of the pores (areas with a high density of 
sebaceous glands, such as the face, chest and back) 
(Fig. 1). They consist of modified keratinocytes 
(sebaceous cells) and secrete sebum, a substance 
rich in lipids that lubricates the hair and skin, thus 
promoting the growth of lipophilic and anaerobic 
microorganisms, such as Propionibacterium acnes, 
which hydrolyzing triglycerides in the sebum thus 
maintaining the acid pH of the skin. The composition 

identify microbial genes, it has become clear that 
cultured microbes represent only a small fraction of 
the total organisms interacting on the surface of the 
human body and have sought to describe the diversity 
of microbes that live in our body and the microbial 
communities that inhabit them have collectively 
called it “microbiome” (4). These play a vital role in 
its physiology and skin homeostasis. During the life of 
a person, all keratinized skin cells, immune cells and 
germs, interact to maintain the natural and immune 
barrier of the skin healthy and to restore balance when 
dysbiosis or injury phenomena. There is a complex 
link between skin germs and their host (5, 6). 

The structure of the integumentary system 
The skin of an adult covers an area of   

approximately 2 m2 and consists of three layers: (a) 
epidermis, (b) dermis, and (c) hypodermis and skin 
appendages (hairs, nails, sebaceous glands, eccrine 
and apocrine sweat glands) (6, 7).

The epidermis, which is the outer layer of the 
skin, provides immediate protection from external 
factors. It is a graduated squamous epithelium in 
which 90% of its cells are keratinocytes. These 
cells synthesize a series of structural proteins such 
as keratins. As the keratinocytes move from the 
basal layer, they differentiate to produce a variety of 
protein and lipid products. These cells undergo an 
apoptotic process in apoptosis in the granular layer 
before becoming the depleted and nucleated cells 
that form the stratum corneum. The skin is a site of 
lipid production, and the stratum corneum’s ability 
to act as a hydrophobic barrier is largely due to its 
design. Dead keratinocytes with a strongly bound 
protein membrane are found within a metabolically 
active lipid layer composed of keratinocytes. Also, 
important skin cells are Langerhans cells which are 
dendritic cells derived from the bone marrow. Their 
main function is the effective presentation of foreign 
antigens in lymphocytes. The epidermis is attached 
to but separated from the underlying skin through the 
basement membrane. The latter acts as an anchor for 
the skin but allows the free circulation of cells and 
nutrients between the skin and the dermis (6, 7).

Dermis, just below the skin, contains blood 
vessels, nerves and skin components (hair follicles and 
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several weeks, combined with exposure to the 
surrounding environment and body anatomy of 
children, it shows an increasing variety as they grow 
up. However, within six weeks of birth, the microbial 
composition has significantly evolved, expanded 
and differentiated, and within the first 6 weeks of 
life the baby’s microbiota undergoes substantial 
reorganization, driven primarily by the body itself 
and not by the birth pattern (14). The skin microbiota 
of the new-born is different from that of an adult, 
due to particular differences in the structure and 
function of the skin. The baby’s skin is dominated 
by Firmicutes (mainly Staphylococci), followed by 
Actinobacteria, Proteobacteria and Bacteroidetes. 
However, early microbial colonization is expected 
to affect the development of immune function 
in the skin. The first colonization dominated by 
Staphylococci (the stratum corneum of a new-born 
is relatively better hydrated than of an adult). As a 
person ages, the microbial communities differentiate 
and become similar to those of an adult organism 
from the age of 12-18 months (15).

In adulthood, based on sequencing of the 
ribosomal 16S RNA gene, most bacterial skin 
inhabitants belong to four genera: Actinobacteria, 
Bacteroidetes, Firmicutes, Proteobacteria and these 
inhabitants are present in different proportions and 
Actinobacteria are the most abundant inhabitants of 
many skin sites. Despite the constant exposure of the 
skin to the environment, the microbial composition 
remains unexpectedly stable over time, raising the 
hypothesis of its resistance to pathogens (16). The 
skin has the most diverse bacterial communities 
of any epithelial surface studied to date. Wet areas 
(navel, groin, sole of foot, front of elbow and bridge 
of knee) the most abundant microbes that colonize 
are Staphylococcus and Corynebacterium, of the 
genera Firmicutes and Actinobacteria respectively 
(5, 17). Sebaceous glands, such as the forehead, 
the side of the nostrils, the crease behind the ear 
and the back appear to house the least diverse germ 
populations and the Propionibacterium species of 
the genus Actinobacteria are the most common 
isolates of the sebaceous regions (such as the face 
and trunk) probably due to their ability to survive 
in these anaerobic and lipid-rich environments (4). 

of normal flora is influenced by the essential fatty 
acid deficient (EFAD) skin lipids and in vitro 
experiments are effectives against Streptococcus 
pyogenes, S. aureus, S. epidermidis, Micrococcus 
spp., and a Coryneform. Hair follicles and sebaceous 
glands represent an anoxic environment that hosts 
anaerobic microorganisms (6, 7).

DISCUSSION

The development of human skin microbiota 
The development of microbiota of the skin begins 

at birth. The bacterial microbiota bio location and 
individuality shape the structural and functional 
composition of the skin. Thus, the variations of 
quantity and stability of the microbial community 
depend on the specific characteristics of the skin 
area e.g., the palms or soles of the feet, the skin is 
thick and hairless (dry type skin), while others such 
as axilla have thin skin and wide number of eccrine 
glands (moist skin) and consequently can have 
zone with more greasiness with a wide number of 
sebaceous and eccrine glands, such as face, scalp 
and torso (sebaceous or oily skin). The microbiota, 
although individualized, changes systematically 
between different environment and aging (10, 11).

At first the skin is sterile in the womb, and it 
has been shown that the fetus comes into contact 
with microorganisms belonging to the maternal 
microbiota and have been isolated from meconium 
(obtained from healthy newborns) by caesarean 
section lactic acid bacteria. Such a finding indicates 
that the embryos are not completely sterile and 
that there may be an outflow of congenital bacteria 
from the mother to the baby. All isolated strains 
belong to the genus Enterococcus, Streptococcus, 
Staphylococcus or Propionibacterium (12). The skin 
is therefore colonized by microorganisms at birth. 
This original microbial members have a very little 
variety throughout the body and is largely shaped by 
the way babies are born - babies born with normal 
births will be colonized by germs in the mother’s 
vagina, while babies born with cut cesarean section 
acquire a skin flora more similar to that found in 
the mother’s skin (13). The process of microbial 
synthesis of the skin flora progresses mainly over 
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of the human microbiota has focused primarily on 
species composition. However, the skin barrier is not 
only its epidermis but also the underlying layers, which 
influence its function and also host the germs. In fact, 
DNA sequencing from the skin and dermal adipose 
tissue has shown (via 16S bacterial ribosomal RNA), 
a diverse and partly distinct microbial community in 
the subcutaneous areas of the skin, hair follicles and 
sebaceous glands (20-22). 

Skin microbiota and innate - adaptive immunity 
The skin, the largest organ in the human body that 

hosts a wide and complex variety of natural (innate) 
and adaptive immune functions. Within the skin, 
both innate and adaptive mechanisms contribute 
to immune function. Despite the strong immune 
system present in the skin barrier, the skin favours 
colonization by microorganisms. Immune defence 
is normally distinguished in an innate immune 
response that offers immediate protection from 
invading pathogens and an adaptive or acquired 
immune response that takes longer to develop but 
is specialized and provides long-term protection. 
Mechanisms of immunity against infection include 
anatomical barriers, phagocytes, soluble molecules 

The dry areas of the skin (forearm, some areas of 
the hand and buttocks) have been shown to have 
the greatest variety in microbial populations, with 
different aspects of the four main genes. However, 
it is unclear what percentage of these organisms can 
actually survive or reproduce on the skin. However, 
we must not forget that fungi, parasites and viruses 
reside in the skin, so microbial diversity is not 
limited to bacteria but also microorganisms such as 
fungi that play an important role in the stability of the 
microbial community and then in the health balance. 
In normal human skin, the commonly recognized 
fungi are Malassezia spp. representing up to 80% of 
fungi depending on the anatomical position of the 
skin. They dominate the trunk and arm while the 
feet, are colonized by a more diverse combination of 
Malassezia, Aspergillus, Cryptococcus, Rhodotorula, 
Epicoccum and others (18, 19). 

Another important factor to consider for microbiota 
diversity are individual behavioural factors that alter the 
condition of the skin’s surface. Indeed, some species, 
such as Cutibacterium acnes, will tend to colonize 
multiple areas of the skin of the same individual but 
others, such as Staphylococcus epidermidis, will tend 
to colonize different areas. Transgenic classification 

 
Fig. 1. The integumentary system 
 

Fig. 1. The integumentary system.
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are involved in promoting tolerance to autoantigens 
and related microbes through the induction of 
regulatory T cells under normal conditions (27, 28). 
Furthermore, there are many cells that function in 
the dermis and are involved in innate and adaptive 
immunity such as dendritic cells, macrophages, mast 
cells, natural killer (NK) cells and a variety of T cells 
including CD8 + memory T cells, CD4 cells + TH1, 
TH2 and TH17, NKT cells and regulatory T cells 
(Treg) (10, 23, 24, 29). Under eubiosis, the skin is 
filled with very different T cells. Therefore, due to 
the sheer number of possible antigens expressed by 
the microbiota, it predicts that a significant fraction 
of these T cells residing in the skin are specific to 
normal flora. Due to the unusual pressure exerted 
by the microbiota on the immune system, the largest 
number of immune cells in the body are found in 
areas colonized by diners. In particular, healthy 
human skin is home to approximately twenty billion 
effector lymphocytes, making it one of the largest 
reservoirs of memory T cells in the body. The 
production of antibodies by B lymphocytes and the 
control of their production by the dermal microbiota 
is still not very well understood (28, 30, 31).

Interactions between the skin germs and the host
The germ-microbial interactions actually 

contribute to human health in several ways. Initially, 
the presence of beneficial microbes in the skin results 
in competition for nutrients and space, thereby 
significantly affecting the tendency of pathogens 
to grow when they enter the skin’s surface. In fact, 
the alteration of the normal flora by means of broad-
spectrum antibiotics generally favours opportunistic 
infections by microorganisms that rapidly colonize 
the dysbiotic environment. Furthermore, microbes 
as we have mentioned produce fatty acids and 
bacteriocins which inhibit the growth of many 
pathogens. But if the external defences are violated 
by a lesion or a pathogenic microorganism, the 
special soluble proteins and cells of natural immunity 
are activated (23, 27, 28, 32). Protein agents, called 
bacteriocins, are a natural weapon of bacteria 
since they have the ability to destroy other harmful 
bacteria. They are able to inhibit the growth of even 
closely related species of pathogenic bacteria, while 

such as the complement system and acute phase 
proteins, natural cytokines (NK cells) and dendritic 
cells. When innate immunity fails to provide effective 
protection against a pathogenic invader, the adaptive 
immune system is mobilized (7, 23, 24). The anatomy 
of the skin and its physical/chemical properties are 
the first line of defence against the pathogens that 
tend to invade. The outer surface of the skin consists 
of a lipid and protein layer, keratinized cells, hair 
follicles and glands that secrete lipids, antimicrobial 
peptides, enzymes, salts and many other compounds. 
While the skin surface is mostly drier acidic and high 
salinity with an aerobic environment, the interior of 
the hair follicles is relatively anaerobic and even 
richer in lipids. Skin lipids such as sapienic acid 
may have antimicrobial activity while others, such 
as triglycerides, can be metabolized by microbes into 
free fatty acids monoacylglycerols and diglycerides 
which can act against other microbes or play a 
stimulating role for host cells (7, 25, 26). As we have 
reported, antimicrobial peptides (AMPs) contribute 
significantly to innate dermal immunity and this 
system, combined with the skin’s unique ionic, lipid 
and natural barrier, is the first line of defence against 
entering pathogens in the skin. The immune system 
is made up of a complex network of cells, proteins 
and lymphatic organs strategically placed to ensure 
defence against pathogenic bacteria (17, 23, 24).

There are two types of adaptive immune 
responses: humoral immunity associated with 
antibodies produced by B lymphocytes and cellular 
immunity associated with T lymphocytes, which 
synthesize and release cytokines and thus enact their 
action on other cells. These actions are together on 
natural immunity to maximize the effectiveness of 
the immune response. Keratinocytes are the first to 
be actively involved in the skin’s immune response. 
These epithelial cells express a series of pattern 
recognition receptors (PRRs) that detect germs. 
Hence, it is the keratinocytes that express a series of 
antimicrobial peptides, cytokines and chemokines, 
and the activation of PRRs increases the expression 
of these molecules, resulting in direct antimicrobial 
effects, as well as activation and formation of 
additional immune cells. Recent evidence supports 
the idea that Langerhans cells (LC), found in the skin, 
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skin cancer (37, 38). According to recent research, 
another common skin resident, Corynebacterium 
striatum, suppresses co-cultured S. aureus genes 
and stimulates genes involved in commensalism 
and Corynebacterium accolens in another study 
it appears to inhibit the growth of Streptococcus 
pneumoniae, a common respiratory pathogen. In 
particular, a lipoprotein lipase hydrolyzes triolein 
which releases oleic acid, inhibiting the growth of 
pneumococci (39). Another common bacterium is 
P. acnes which has shown that it is able to inhibit 
the growth of growth of methicillin-resistant 
Staphylococcus aureus (MRSA) by fermenting 
glycerol (a metabolite normally found in human 
skin) into a series of short-chain fatty acids that 
carry to a reduction of the intracellular pH within S. 
aureus, thus inhibiting its growth. This suggests that 
P. acnes can prevent the development of pathogens 
in human skin and could also be used to develop new 
therapies for MRSA infections (40).

In conditions of eubiosis, AMPs in the skin 
are mainly produced by keratinocytes, but also by 
mast cells and sweat glands and that a significant 
contribution also comes from symbiont bacteria, 
which produce AMPs and TLR ligands. The main 
groups of AMPs found in the skin are defensins, 
cathelicidin, dermcidin and a group of proteins/
peptides including the RNAse7 and S100 proteins 
(41-43). Dermcidin (DCD) with natural broad-
spectrum antibacterial activity and in areas of 
the body with a high probability of contact with 
pathogenic microorganisms, a large amount of DCD 
peptides was also detected in sweat. 9 Cathelicidin 
(one of its two LL-37 fragments is anti-Gram-) and β 
defensins have strong antimicrobial activity against 
Gram-positive and Gram-negative bacteria (44). 
Therefore, some AMPs are expressed components 
of host cells, while others they can be stimulated by 
specific members of the normal flora, or produced 
microbes (including Cutibacterium’s thiopeptides) 
(45, 46). Under inflammatory conditions, large 
numbers of AMPs are produced by the penetration of 
immune cells (e.g., neutrophils). The basic functions 
then of all AMPs produced are the activation of the 
host’s innate immune response against pathogens. 
Most symbiotic germs on the skin behave as neutral 

having no effect on the microorganisms that produce 
them (27). There are many networks of germ-
microbial interactions that can govern host disease 
in a strain- and environment-dependent manner. S. 
epidermidis is generally beneficial to the host but is 
also a leading cause of death in premature infants 
and nosocomial infections (33). S. epidermidis is one 
of the most abundant members of the skin bacterial 
community and a related species of the pathogenic 
Staphylococcus aureus (although S. epidermidis can 
cause severe infections, it is an opportunistic pathogen 
under certain conditions) (22, 34). Staphylococcus 
epidermidis, acts as a barrier against colonization 
pathogens and inhibits the excessive development 
of opportunistic pathogens already present. (e.g., S. 
epidermidis and Staphylococcus hominis have been 
shown to secrete antimicrobial peptides that kill S. 
aureus and transplantation of these species into the 
skin of patients with atopic dermatitis has resulted in 
reduced colonization with S. aureus). S. epidermidis, 
detected by keratinocytes via the Toll type 2 receptor, 
has been shown to improve host defense against S. 
aureus infection through increased expression of 
these antimicrobial peptides which against a large 
variety of skin pathogens, including Gram-negative 
bacteria, fungi, viruses and parasites (22, 35). S. 
epidermidis is able to inhibit the formation of bio 
membrane from S. aureus by producing a serine 
protease, Esp, which also enhances the antimicrobial 
effects of Human β defensin 2 (HBD2). Some strains 
of S. epidermidis cause activation of specific IL-17 
T cells and CD8 + (cytotoxic) T cells that protect 
the skin from infection by causing keratinocytes to 
produce AMP, a phenomenon called heterologous 
protection (36). In addition to their protective role, 
these specific commensal T cells also promote wound 
healing (12, 30, 35, 36). The Staphylococcus species 
that populate the skin are involved in beneficial 
microbial-microbial interactions for the host by 
the production of a variety of immunomodulatory 
molecules, such as wall acids and polysaccharides. 
It has recently been discovered that substance-
producing Staphylococcus epidermidis 
6-N-hydroxyaminopurine (6-HAP) can regress 
skin cancers and thus the skin microbiota plays an 
important role in the body’s defence, including for 
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such as atopic dermatitis, acne, psoriasis. Therefore, 
microbiota regulates the expression of various 
intrinsic immune factors such as: (a) Interleukin IL-
1, (b) antimicrobial peptides (AMPs) which naturally 
produced by keratinocytes and sebaceous glands 
and (c) complement. The microbiota enhances the 
activation of lymphocytes both in the normal state 
and during infection, which acts as an endogenous 
adjuvant to the skin’s immune system. (Fig. 2) (5, 
36, 50, 51). 

Skin microbiota dysbiosis and diseases
Several studies have found differences in the 

germs present in diseased skin compared to those 
present in healthy skin. Thus, the microbiota 
contributes significantly to normal immune 
development and skin function, and it makes sense 
to link diseases to changes in its composition. While 

or reciprocal under normal conditions. These 
microbes play an important role in the maturation and 
homeostasis of skin immunity through their effect 
on host cell function. Finally, germs can increase 
the expression of the complement system made 
up of a group of more than 20 precisely regulated 
and functionally linked proteins that promote 
inflammation and destroy pathogenic invaders (35, 
47-49).

Thus, microbiota produce their own AMPs 
thus acting to enhance the production of AMP 
by keratinocytes. Hence useful for maintaining 
inflammatory homeostasis by suppressing the release 
of excess cytokines after minor skin damage. These 
observations suggest that the normal microflora 
of human skin protects the skin in various ways, a 
conclusion that supported by many lines of evidence 
linking diseases with an imbalance of microflora 

Fig. 2. Defence axis between epithelial/microbe and microbe/immune system. The microbiota located in Integumentary 
system inhibit the installation of other pathogenic microbes. 

Fig. 2. Defense axis between epithelial/microbe and microbe/immune system. The microbiota 
located in Integumentary system inhibit the installation of other pathogenic microbes.  
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It has been observed that traditional pathogens 
often populate the skin surface asymptomatically 
e.g., one of the most important skin pathogens is S. 
aureus. Although more than 30% of healthy people 
are asymptomatically colonized by S. aureus it can 
still become pathogenic through furuncle or cellulitis 
or even more severe infections through penetration 
into any organ of the body (e.g., bones osteomyelitis, 
bacterial endocarditis, sepsis and more). S. aureus 
has also been implicated in the pathogenesis of 
chronic diseases such as atopic dermatitis and 
systemic lupus erythematosus with renal and dermal 
dysfunction (52-59). Mycobacterium is another 

studies show that many diseases cause dysbiosis, 
but on the other hand, it is not entirely clear whether 
changes in the microbiota lead to disease or whether 
certain conditions lead to an imbalance in microbial 
communities (Fig. 3). Many germs considered 
relatively harmless commensals can actually 
cause severe infections under immunosuppressive 
conditions, e.g., the germs present in chronic non-
healing ulcers as well as the rates of coagulase-
negative staph infections observed in hospitals. 
So even apparently beneficial microorganisms can 
take on a pathogenic role when they find the right 
opportunity (52, 53). 

 
 
Fig. 3. Potential factors through which the skin microbiota can trigger the onset or 
exacerbation of its disorders. In most cases, but also combinations of different scenarios may 
be required to activate pathologies. In turn, the induced inflammation can alter microbial 
communities. 
 

Fig. 3. Potential factors through which the skin microbiota can trigger the onset or exacerbation of its disorders. In 
most cases, but also combinations of different scenarios may be required to activate pathologies. In turn, the induced 
inflammation can alter microbial communities.
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today by studies shown to increase in abundance 
in dandruff-affected skin. Furthermore, because 
Malassezia found in the common fungal microbiota, 
it is not the only cause of the disease alone, but 
there may be other active mechanisms involved in 
the etiology. However, recent work has shown that 
dandruff microbial communities are more complex. 
A molecular analysis of the 26S rRNA gene 
from fungal communities confirmed the relative 
abundance of Malassezia in the dermis of the scalp 
(17, 78, 79). and that Penicillium-related dermatitis 
and Filoblasidium floriforme are associated with 
the severity of dandruff. In general, all germs living 
on or in a host fall into a range, with some showing 
almost no aggressive behavior and others appearing 
mainly with infectious and invasive phenotypes 
i.e., there is an alternation of microbes between 
passive and aggressive behavior. For example, P. 
acnes produces coproporphyrin III that induces the 
formation of S. aureus in the biofilm, which leads to 
a negative effect on the host but on the other hand 
P. acnes, ferments glycerol into short chain fatty 
acids, thus suppressing growth methicillin-resistant 
pathogenic S. aureus USA300. A similar range of 
harmful and beneficial effects has demonstrated for 
other microbes (33, 40, 80). 

The pathogenesis of hidradenitis suppurativa 
(HS) is still under study; however, several factors 
indicate a possible involvement of the dermal 
microbiota. The composition of germs in HS differs 
significantly from that of healthy individuals. In total, 
the following types of 5 microbes were identified: 
Corynebacterium species (type I), Acinetobacter 
and Moraxella species (type II), Staphylococcus 
epidermidis species (type III), Peptoniphilus species 
and Porphyromonas (type IV) and Propionibacterium 
V acnes (The microbiota types consisted mainly 
of type I or type IV and Type IV was not detected 
in healthy controls). Several species, including 
Propionibacterium, showed significantly greater 
relative abundance in healthy controls against HS 
skin, suggesting that Propionibacterium may be part 
of the pathogen in HS via a dysbiotic condition of 
the microbiota and HS (81).

Acne is a chronic and inflammatory skin disease 
characterized by anomalies in the production of 

important pathogenic genus of the skin, a bacterium 
belonging to the Actinobacteria. Mycobacteria 
are a diverse genus of organisms including the 
etiologic agents of Mycobacterium tuberculosis and 
Mycobacterium leprae, and other species that cause 
hospital or wound infections (e.g., M. kansasii, M. 
chelonae and M. marinum). M. tuberculosis generally 
causes pulmonary or systemic infections thus 
producing a particularly wide range up to cutaneous 
manifestations. Furthermore, mycobacteria show 
similarities to Corynebacterium which lives on the 
skin but has very different effects on the host. The M. 
leprae, also causes a wide range of diseases, including 
various skin manifestations, nerve damage, bone and 
eye damage. The incubation period for M. leprae is 
usually 2-12 years (60-64). Furthermore, numerous 
bacteria present in the normal microbial flora of the 
skin often cause infections in chronic and incurable 
wounds, usually occurring in diabetic patients and the 
elderly. Another group of microorganisms, Herpes 
viruses are often pathogenic to the skin, including 
Human herpesvirus 3, with recurrent episodes (HSV1 
and HSV2). However, after the acute phase of the 
infection, the herpes viruses remain dormant within 
the host, in a latent state for the life of the host (65-
67). On December 31, 2019, a new Coronavirus 
strain was reported in Wuhan, China, identified as 
a new Coronavirus beta strain ß-CoV from Group 
2B, with a genetic similarity of approximately 70% 
to SARS-CoV, called Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) caused a 
pandemic infection that continues to this day (68). 
The most common skin manifestations associated 
with COVID-19 infection include a maculo-papular 
or papulovesicular rash, urticarious lesions, livedo 
reticularis and others. The most common areas 
involved are the trunk, hands and feet, with little 
itching experienced and no demonstrated correlation, 
between skin lesions and COVID-19 severity (69-77).

Common skin disorders such as Dandruff, 
hidradenitis suppurativa, acne, atopic dermatitis, 
and psoriasis have associated with dysbiosis of the 
skin flora. Dandruff is a mild inflammatory condition 
characterized by peeling of the skin on the scalp and 
Malassezia species suggested as the main cause 
of dandruff in the 1800s, a view that still prevails 
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Toll-type receptors on the surface of keratinocytes 
that produce antimicrobial peptides such as the 
β-defensins (HBD-2 and HBD-3), interleukin IL-8. In 
the presence of Th2, IL-4 and IL-13 induce STAT6 
phosphorylation by inhibiting INF-γ and TNF-α. 
This subsequently inhibits the production of HBD-2 
and HBD-3, causing a decrease in the production of 
IL-8 leading to the change of neutrophils in the skin. 
These cascades of events help allow S. aureus to grow 
(89). However, the host has developed mechanisms to 
prevent S. aureus from invading any layer of skin and 
subcutaneous tissue. In addition to a variety of AMPs 
produced, adipose tissue contributes to the innate 
immune response. Following a breakdown of the 
skin barrier and subsequent S. aureus infection, lipid 
cells proliferate rapidly, expanding subcutaneous fat 
thereby increasing cathelicidin production (90).AD 
lesions have also been reported to contain high levels 
of lipoic acid and an immunostimulant derived from 
Gram-positive bacterial walls, the presence of which 
further suggests the role of bacterial components in 
disease (91). Defects in various aspects of epidermal 
function have been implicated in AD. Mutations in the 
gene that codes for the protein filaggrin, an essential 
component of the formation of the epidermal barrier, 
have been associated with atopic dermatitis and other 
disorders (92, 92). Furthermore, mutations observed 
in the receptors and signaling molecules that detect 
various microbial bacteria, such as TLR2, CARD4 
and CD14, and reduced expression or function of 
antimicrobial peptides such as defense, dermicidin 
and caliclidine. Although S. aureus may contribute in 
part to the pathogenesis of the disease, the role of the 
microbial community as a whole with an association 
between increased disease severity and reduced 
bacterial diversity of the microbiota. Furthermore, 
fungal communities shown to change in composition 
as disease severity progresses (93-96). 

Many observational studies suggest that a role 
played by dysbiosis of the skin microbiota in the 
pathogenesis of psoriasis and that the type of knee 
psoriasis is triggered by streptococcal infection. 
Analysis of bacterial microflora with approaches 
based on the 16S rRNA gene suggests an under-
representation of Propionibacterium and a greater 
representation of genus Firmicutes in its psoriatic 

sebum, bacterial proliferation that will lead to 
inflammation (most affected areas are the face, neck, 
chest, shoulders and back). This is because these 
areas have a large number of sebaceous glands and 
sometimes an excess of sebum produced, which can 
clog the pores, creating a favorable environment for 
bacteria to grow. In fact, in adolescent acne vulgaris 
there is a sebaceous hypersecretion that leads to the 
obstruction of the pores. This process causes the 
rupture of the follicular wall causing the influx of 
neutrophils and the formation of vesicles, a process 
ability of P. acnes to activate keratinocytes (82, 83). 
The contribution of P. acnes to the pathogenesis of 
acne is however unclear (84) which would be the 
main germ associated with the development of acne 
is that it too is an important member of the symbiotic 
flora of the skin. The strain level analysis of the 16S 
rRNA gene showed that although the amounts of P. 
acnes did not differ significantly between healthy 
and acne patients and the relative proportions of 
the different strains differed between the two skin 
conditions. Furthermore, genomic comparisons of 
different P. acnes strains show that genomes related 
to Acne conserves several chromosomal genomic 
regions and linear plasmid sites, thus suggesting 
that specific genes may be present at these sites that 
contribute to acne pathology (85).

Atopic Dermatitis (AD) is a chronic and recurrent 
inflammatory skin disease, occurring more often 
in children than in adults and is associated with 
dysbiosis. Patients with AD show disruption of the 
skin barrier, modification of T lymphocyte function 
with suppression of antimicrobial responses (86). It 
has long been associated with Staphylococcus aureus 
colonization and infection and that targeted antibiotic 
treatment can sometimes temporarily ameliorate 
the disease (87). In patients with atopic dermatitis, 
Staphylococcus aureus strains develop as biofilms 
in the skin and produce proteases that degrade host 
AMPs such as cathelicidin LL-37 (this type of AMP, in 
addition to its antimicrobial properties, has numerous 
immunomodulatory properties that can contribute 
to the development of autoimmune diseases) (88, 
89). It has been observed that over 90% of patients 
with AD exhibit colonization with S. aureus and 
is recognized by innate immune receptors such as 
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that connects the gastrointestinal microbiota of the 
skin for homeostasis of the body. We must mention 
that there is also other important bowel cross talk 
such as the gut/pulmonary and gut/brain (104, 105). 
It is known that certain gastrointestinal disorders 
are often accompanied by skin manifestations and 
in particular the intestinal microbiota participates 
in an active world in many inflammatory disorders 
(106, 107). The gut microbiota thus contributes on 
Integumentary system allostasis and homeostasis 
after any inflammatory process based on its role with 
innate and adaptive immunity. Excessive production 
of pro-inflammatory cytokines leads to intestinal 
barrier damage. This a condition of severe intestinal 
dysbiosis that leads to inflammation beyond 
intestinal and therefore systemic of low grade with 
involvement of the skin. As a consequence, we will 
have various skin manifestations such as atopic 
dermatitis, eczema, acne and others. It has been 
noted that in some cases in conditions of dysbiosis, 
the increase of the final products of the metabolism 
of aromatic amino acids by Clostridioides difficile 
(i.e., free phenol and p-cresol). This will be capable 
of an imbalance of production between Teff and Treg 
lymphocytes in the intestine with involvement of the 
skin. The free phenol and p-cresol passage into the 
circulation and consequently their accumulation in 
the skin leads to an alteration of the skin barrier which 
can cause electrolytic alterations with dehydration 
and keratinization disruptions (106-108). In fact, 
in the new viral pandemic infection SARS-Cov-2 
which also presents with skin symptoms, as we 
have previously mentioned, alterations of the 
intestinal microbiota have been observed. These 
skin manifestations could be partly justified thanks 
to this over immune process of crosstalk gut/skin, 
but further studies are still ongoing. The intestinal 
microbiota become unbalanced (dysbiosis) in 
many viral inflammatory situations. In the case of 
SARS-Cov-2, changes of various bacterial species 
have been observed in the fecal microbiota in some 
patients. The following are reported: over represented 
Actinomyces, Streptococcus, Rothia, Veillonella, 
Clostridium hathewayi, Actinomyces viscosus, 
Bacteroides nordii, Coprobacillus, Clostridium 
ramosum, Faecalibacterium prausnitzii (act on the 

plaques than in healthy ones. In psoriasis, plaques 
can give an idea of the role of germs in activating, 
spreading and maintaining plaques. Instead, culture 
studies of psoriasis-related organisms identified 
Malassezia, group A and B β-hemolytic Streptococci, 
S. aureus, and Enterococcus faecalis. Analysis of 
evidence of the fungal microflora of the association 
of Malassezia with psoriasis (97).

The gut/skin axis 
The gastrointestinal tract is undoubtedly the main 

place for the growth of microorganisms in the human 
body and according to estimates that are, more about 
3.8x10 (13) bacteria colonize the large intestine of a 
70 kg human. The gut microbiota interacts with its 
host and performs many of the basic functions with 
metabolic reactions such to maintain human health 
(98, 99). The interaction between intestinal microbes 
and the host’s immune system is widely recognized 
to promote the smooth functioning of the intestinal 
immunity system. The bacteria of the symbiotic flora 
produce antimicrobials such as bacteriocins and 
hydrogen peroxide that inhibit the growth of others 
with pathogenic behaviour. The intestine is a humid 
environment with a neutral pH rich in polysaccharides 
and various sources of carbon and nitrogen with 
more aerobic areas in the intestinal crypts than in the 
hair bulbs of the skin and a thick layer of mucus that 
allows it to support much larger microbial biomass 
(100-103). Conversely, skin performs its functions 
of protection, thermoregulation, water retention and 
immune protection when it is in a state of balance. 
The skin differs from the intestine in its physical and 
chemical properties. The skin is more dry and less 
moist, acidic, rich in a high salt lipid environment 
with no exogenous nutrient sources and therefore has 
a low microbial biomass. Additionally, the material 
within the crypts regularly exchanged for material in 
the intestinal tract due to peristalsis, while the hair 
follicles have narrow openings filled with sebum and 
keratinocyte fragments, making them more isolated. 
The intestine and the skin are highly vascularized 
organs with important immune and neuroendocrine 
roles, and it appears that they are uniquely connected 
by purpose and function (7, 10). Thus, it appears that 
there is a bi-directional link between gut and skin 
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negative effects. In fact, it is well known that a lip 
infection by Herpes virus 1-2 may diffuse to the 
oral cavity, leading to glossitis and mucositis, and 
angular cheilitis can be complicated by Candida 
albicans superinfection, moreover in young children 
and immune suppressed patients.

Conclusions
Different germs have evolved to thrive in 

different ecological locations in our body. Skin 
microbiota regulates and contributes to skin 
immunity through their effect on host cell function. 
More and more studies have begun to shed light on 
the relationships that skin microbiota germs share 
with their host. It has observed that, as immune 
factors and host behaviours shape the composition of 
these communities, the microbes themselves present 
in the skin also significantly influence the functions 
of human immunity. Therefore, to understand 
the microbial flora of the skin, it is important to 
recognize that unlike all other studied areas of the 
microbiota, such as the intestine and oral mucosa, the 
skin has the greatest variety of variables that affect 
its surface characteristics and a wide variety of cell 
types predisposed to interact with germs. Given the 
great diversity of skin environments, it makes sense 
to predict that each microenvironment will support 
very different populations of microorganisms. The 
study of the microbial communities that populate the 
skin revealed the great temporal and spatial diversity 
of the microbiota components that observed both 
between different individuals and within the same 
person. Although several discoveries have made 
about the importance of microbial communities, 
much less is known today about the role of skin 
microbes in developing and maintaining our immune 
system. Therefore, today the skin’s immune system 
be considered a collective mixture of elements 
made up of the host and the microbes acting in a 
mutual relationship. However, persistent dysbiotic 
conditions can lead to skin diseases and there is a 
crosstalk between intestinal and skin microbiota that 
affects the human health and is still being studied. In 
this light view, some dermatological manifestations 
in the course of many diseases, including the new 
pandemic infectious SARS-Cov-2, could find 

severity of the infection), Firmicutes (has a potential 
influence on the intestinal ACE2 expression), 
Corynebacterium, Ruthenibacterium, and reduce 
Eubacterium ventriosum, Faecalibacterium taxus 
fecalaceae, Lachnospiraceae, Bifidobacterium, 
Lactobacillus (31, 33). Finally, some Bacteroides 
spp (B.dorei, B.thetaiotaomicron, B.massiliensis and 
B. ovatus) have a protective effect against the viral 
inflammation (69, 70, 109-118). 

Some studies report the link between intestinal 
dysbiosis and the skin some diseases and this has 
shown in many studies through the administration 
of probiotics (104). The probiotics fight the spread 
of pathogens, strengthen normal flora and contribute 
to the creation of a strong immune system, creating 
a healthy environment that encourages healing and 
recovery in a natural way. Studies have shown the 
significant effect of probiotics on building a strong 
immune system (113). The beneficial bacteria they 
contain play an important role in helping the body to 
stay healthy so that it can fight some diseases. Thus, 
Probiotics help the restore balance of microbiota 
and lead to the eubiosis. The genera Lactobacillus 
and Bifidobacterium species are the most commonly 
used probiotics (115, 119-122, 123-157). 

In several studies on animals but also on humans 
have shown the benefit in some skin diseases such as, 
atopic dermatitis, acne vulgaris, psoriasis and others 
through the administration of probiotics. Some 
studies report the link between intestinal dysbiosis 
and atopic disease. After metagenomic analysis of 
fecal samples from patients with atopic dermatitis, 
the reduction of Faecalibacterium prausnitzii was 
noted. In a study involving 300 individuals with 
acne, strains of L. acidophilus and L. bulgaricus were 
administered, an improvement of 80% of patients 
was noted. In another randomized, double-blind, 
placebo-controlled study, B. infantis 35624 was 
administered to 26 patients with plaque psoriasis and 
an improvement in systemic inflammation was noted, 
with decreases CRP and TNF-α. This is probably a 
demonstration of how the gut microbiota can affect 
skin health (104, 158). 

However, due to the continuity of skin and mouth 
microbiota, the interaction of these close ecological 
systems is obvious and may have both positive and 
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