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Diabetes complications and osteoporotic 
fractures are two of the most important causes of 
morbidity and mortality in elderly patients and 
share many features including genetic susceptibility, 
molecular mechanisms, and environmental factors 
(1). Type 2 diabetes mellitus (DM2) compromises 
bone microarchitecture by inducing abnormal bone 
cell function and matrix structure, with increased 
osteoblast apoptosis, diminished osteoblast 
differentiation, and enhanced osteoclast-mediated 
bone resorption (2). The relation between these two 
metabolic types of disease has to be found within 

three areas, the micro-molecular compartment of 
gut microbiota, at the energy regulatory level of 
intracellular compartment, at the mesenchymal stem 
cell (MSCs) differentiation apparatus to osteoblasts 
and, at the neuro-endocrine regulatory compartment 
of hormones and immune responses (4-6). Both 
glycemic and bone homeostasis mechanisms share 
the same regulatory factors and interface with the 
same signaling pathways. Despite the rapid progress 
in understanding the role of the different signaling 
pathways that links the skeleton homeostasis and 
diabetes insurgence doubts remain. For instance, it 
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The diabetes and osteoporotic metabolic diseases are characterized by a wide prevalence of the 
population worldwide and correlated to alteration of the bone tissues. Several cofactors could influence 
the clinical course and the biochemistry of the pathologies such as human microbiome, nutrition 
characteristics, gut microbiota activity and interactions with vitamin K and D across IGF/GH and TP53 
signaling pathways and the glucose/energy as mechanism for bone tissue health. Moreover, also the 
calories and sugar consumption seem to be correlated to an increased inflammatory state with several 
consequences for hematopoiesis and host tissues response. The aim of the present literature review was 
to highlight the role of osteoporotic diseases and diabetes type 2 link for the bone metabolism. The 
literature cases showed that a correlation between bone-gut-kidney-heart-CNS-Immunity crosstalk 
seems to be linked with bone metabolism and health regulation. Moreover, also the aging process could 
represent a valuable co-factor for the sustaining of the metabolic disorders upon a multi-systemic level.
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effects may be also seen to affects the immune-
endocrine-metabolic system at the level of central 
nervous system (CNS) and the enteric nervous 
system (ENS) of the gut. This small review’s aim is 
to briefly explore the systemic impact of endocrine-
metabolic dysfunctions in bone homeostasis decay 
and the gradual uprising of DM2, elucidating the 
key role of skeleton system in preserving health and 
regenerative process. 

DISCUSSION

Nutrition, human microbiome and metabolic syndrome
During last few decades, in both Western 

and Eastern countries it has been experienced 
an exponential increase of non-communicable 
diseases, such as allergies, autoimmune disorders, 
and inflammatory conditions. The incidence of 
Diabetes for instance has reached an alarming 

is still unclear the signal inputs within the mTOR 
pathways and the corresponding mechanisms for 
activating mTORC1 versus mTORC2 and the 
effective role of PT53, secondly how this defection 
may compromise the regenerative mechanism which 
involves the activation of MSCs from BM.

Current outcomes have confirmed the co-
expression of multiple growth factors, proteins and 
hormones including Wnt, IGF1-2, and Bmp that 
may definitively play a role along the whole axis that 
links together gut, skeleton, and metabolism. Any 
disturbance of this mechanism may trigger a cascade 
that will negatively affect bone homeostasis, bone 
cell differentiation and bone remodeling process. 
The types of dysfunction may include changes in 
intracellular pH balance, the over-expression of 
ROS, the increase of pro-inflammatory signaling 
pathways, the accumulation of CO2 and toxins 
within intracellular space and in tissue. The side-

 
Fig. 1. The prevalence of diabetes worldwide in the 2019. The data were obtained by the Global 
Health Data electronic database (GBD Institute for Health Metrics and Evaluation-University 
of Washington) (3). 
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accumulation of adipose tissue may negatively affect 
the correct functionality of pituitary/hypothalamus 
system indirectly interfering with the normal relation 
within organs (10-14)resulting in clinical conditions 
such as metabolic syndrome, early atherosclerosis, 
dyslipidemia, hypertension and type 2 diabetes (T2D.  

The core momentum has to be searched within 
the gut system. Simple chain refined carbohydrates 
and sugars are fermented by specific gut bacteria 
and are broken down into short-chain fatty acids 
(SCFAs), primarily acetate, propionate, and butyrate. 
The importance of SCFAs is based on their role in 
modulating the use of energy derived from the diet 
through the interaction G protein-coupled receptor 
41-43 (GPR41-43) with special entero-endocrine 
cells that are in charge of inducing the secretion of 
peptide YY (PYY) that in turn enables food transit in 
the intestines. The special commitment of GPR43 is 
characterized by the activation of the glucagon-like 
peptide 1 (GLP-1) essential in the constant insulin 

level and has become a major lifestyle metabolic 
disorder globally, in developing Asian countries 
it contributes to more than 60% of the world’s 
diabetic population (Fig.1, 2) (7, 8).

Important data, mainly from nutrition science, 
stressed out the protecting effects of a balanced 
and uncontaminated diet versus the consequences 
of the ageing process inducing more regenerative 
responses. Findings have indicated that ageing 
and physiological decay are strictly correlated 
with weakening of the adult stem cell regeneration 
process as consequence of high industrial processed 
food intake (9). 

Metabolic syndrome (MSy) is a consequence of 
the modern industrialized fatty/sugar food production 
that includes severe clinical complications such as 
dyslipidemia, hypertension, diabetes and dementia 
that share underlying common pathophysiological 
mechanisms. Unhealthy fat and toxins buildup 
predispose individuals to MSy, the long term presence 

 
Fig. 2. The incidence, prevalence, DALYs (disability-adjusted life years) and YLDs (Years 
Lived with disability) of diabetes worldwide in the 2019. The data were obtained by the Global 
Health Data electronic database (GBD Institute for Health Metrics and Evaluation-University 
of Washington) (3).    
 

Fig. 2. The incidence, prevalence, DALYs (disability-adjusted life years) and YLDs (Years Lived with disability) of 
diabetes worldwide in the 2019. The data were obtained by the Global Health Data electronic database (GBD Institute 
for Health Metrics and Evaluation-University of Washington) (3).   



256 (S1)

pH microenvironment are among the several causes 
accountable for the occurrence of endothelial dysfunction 
in cardiovascular disease and bone decay in diabetic 
patients (25, 27-29)and their cell surface marker profiles 
change during the process of mobilization and maturation. 
Hence, a generally accepted marker combination and a 
standardized protocol for the quantification of EPCs 
remain to be established. To determine the EPC subsets 
that are affected by diabetes, we comprehensively 
analyzed 32 surface marker combinations of mouse 
peripheral blood (PB. 

More specific, chronic gut dysbiosis is 
characterized by local physiological alteration 
due to uncontrolled increase of different 
types of bacteria such as the Firmicutes, 
Staphylococcus, Enterobacteriaceae and E coli, changes 
that are clinically confirmed in patients diagnosed with 
gut inflammatory disease like Crohn’s disease and 
ulcerative colitis who also are affected by osteoporosis 
and osteopenia (30, 31). 

Hormones, bones and diabetes 
Molecularly, one of the mechanisms involved 

may be related to deficits incurred in the RANKL 
(receptor activator NF kappa B ligand NFκB-RANK), 
osteocalcin (OCN), osteoprotegerin (OPG) and, the 
immunoreceptor tyrosine-based activation motif 
(ITAM) system.  Noteworthy, the RANKL, OPG 
and ITAM are members of the TNF super-family 
and share the same signaling pathway of androgen 
hormones (32). 

The activation in mononuclear cells of NFκB 
which coordinates the transcription of IL-1, IL-6, IL-
8, and other peptides increase important inflammatory 
responses up-regulating viciously the expression of 
pro-inflammatory genes such as TNF-α, adhesion 
molecules, and different chemokines generating a 
consistent and perturbing inflammatory state typical 
of metabolic related disorders (33-35).

A further co-related effect linked to these 
disturbances is the inhibitory effect on the 
hypothalamus/pituitary/adrenal axis with a further 
and progressive decay of testosterone, estrogen 
and progesterone and the augmentation of pro-
inflammatory factors such as TNFα. However, deficits 
in testosterone levels are common in men with Type 

sensitivity. The gut microbiota work based on a finely 
coordination between leptin, insulin hypothalamus 
hormone axis and, by this way can regulate the 
fasting-induced adipose factor (Fiaf) expression in the 
ileum, a key factor in blocking the lipoprotein lipase 
(LPL) for fat storage in white adipose tissue to prevent 
excessive fat accumulation. The SCFAs also activate 
the intestinal gluconeogenesis (IGN mechanism) via 
the ENS pathway improving the glucose metabolism 
decisive in the satiety level mechanism (15-20). 

Stem cells/osteoblast disrupted differentiation pathway 
in DM II: the role of dysbiosis

The dysfunction of gut microbiome generates an 
event known as dysbiosis, a condition characterized by 
the abnormal balance between all different constituents 
of the gut micro-flora which predisposes an over 
accumulation of humus of indigested starches and 
sugars in the intestinal epithelium (21)dental stem 
cells from apical papilla (SCAPs. In the medium, long 
term, this accumulation leads to the intensification 
of methane, hydrogen, and nitrogen gases with a 
consequent inhibitory effect on the local compensatory/
regulatory mechanism. The main relevant end-point is 
seen with the upsurge of both fermenting bacteria and 
the increase of pH acid level that favor uncontrolled 
auto-immune responses and the uprising of a systemic 
chronic inflammatory state (15-19). 

Though apparently may seem incongruous, the 
connection diabetes/bone degeneration should be seen 
in the gut subverted environment otherwise known as 
“diabetic stem cell mobilopathy” and “diabetes induced 
bone marrow micro-angiopathy”, conditions which 
indicate impairments of the stem cell differentiation 
and mobilization mechanisms (22-26)and their cell 
surface marker profiles change during the process 
of mobilization and maturation. Hence, a generally 
accepted marker combination and a standardized 
protocol for the quantification of EPCs remain to be 
established. To determine the EPC subsets that are 
affected by diabetes, we comprehensively analyzed 32 
surface marker combinations of mouse peripheral blood 
(PB. The reduced availability of circulating stem cells 
and downregulation of both osteoblast and endothelial 
progenitor cells (EPCs) caused by hyperglycemia and 
the oxidative stress together with consistent acidic 
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MSCs whilst can be activated in B lymphocytes, 
follicular DCs, and could be regulated positively 
by TGF-β, IL-1, TNF, estrogen, Wnt ligands and 
negatively regulated by prostaglandin E2 (PGE2) and 
glucocorticoids. At this point it is essential to remark 
that the progressive decrease of testosterone, estrogen 
and progesterone witnessed in diabetic individuals 
reveals a complex situation. A scenario characterized by 
a compromised regenerative process of MSCs within 
the BM niches concomitant to an elevated systemic 
inflammatory state on one hand and, a skeleton system 
steady decay related to the decline of both OPG and 
OCN functionality, on the other hand (39-41).

Gut microbiota, calcium absorption and the role of 
vitamin K and D

Diabetes type 2, vascular calcification and 
osteoporosis involve the same degenerative 
mechanisms all related to gut dysbiosis in which the 
synthesis of important molecules such as the vitamin 
K provokes deep homeostatic deteriorations. The 
vitamin K deficiency triggers the so called “calcium 

2 diabetes. Such men are characterized by normal 
gonadotropin responses to gonadotropin‐releasing 
hormone stimulation (24-26).

It is interesting to note how the frequency of androgen 
deficiency in male patients with MSy and DM2 has been 
seen more than a simple coincidence, the outcomes 
showed how this association is in real much higher 
than that in the normal population. Data found that the 
prevalence low testosterone levels in DM2 reached 
almost 40% either Europe or China (36-38). 

Granim and colleagues recently showed that 
following testosterone treatment it was noted a 
substantial increase in serum OCN concentrations, 
they endpoint showed the change from baseline in 
OCN at week 23 of the study group significantly 
higher than the placebo group [mean change (95% 
CI), 3.52 [0.45, 6.59], P = 0.008] (37). 

Of note in this situation the OPG is concomitantly 
down regulated that in turn induces an uncontrolled 
osteoclast hyper-activity. The OPG which main activity 
is the modulatory activity of the osteoclastogenesis via 
RANK pathway is expressed primarily by BM stromal 

 
 

Fig 3. The important role of Vitamin K in formation of bone and osteoblasts activation and 
regulating bone homeostasis (Gargiulo Isacco Ciro). 
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Of note, the Warfarin anti-coagulant use in 
patients with cardio vascular diseases (CVD) acts as a 
Vitamin K antagonist in preventing vitamin K activity 
by inhibiting two vitamin K correlate enzymes, the 
epoxide reductase (VKOR) and vitamin K quinone 
reductase; the long term usage of Warfarin showed 
evident decay of bone tissue and of note, the VKOR 
subunit 1(VKORC1) has been also used as a marker 
for bone degenerative condition (52-55). 

The strategic function of VKORC1 as main 
oxidoreductase enzyme is to allow the absorption of 
vitamin K quinone by dietary uptake reducing it into the 
hydroquinone (KH2) form, allowing the entry of vitamin 
K into the whole vitamin K cycle (55,56). The following 
steps lead to oxidation of vitamin K hydroquinone to 
vitamin K 2,3-epoxide (K>O) mechanism that takes 

paradox”, that is contradistinguished by the lack of 
calcium in the bone and its ectopic deposit in different 
location other the skeleton such as, the vessel walls, 
bone surfaces (osteophytes) and joints (42-49). 

 The role of vitamin K in bone formation and 
bone homeostasis has been for long time neglected, 
Vitamin K participates as coenzyme for the gamma-
Glutamyl CarboXylase (GGCX) enzyme formation 
inside the endoplasmic reticulum that catalyzes the 
carboxylation of glutamic acid residues (Glu), which 
in turns once converted into gamma-carboxyglutamic 
acid (Gla) enhances the activity of Vitamin 
K-Dependent Proteins (VKDPs). The importance of 
VKDPs is their involvement in the vascular and bone 
tissue repair mainly thanks to the activity of the bone 
Gla protein and osteocalcin (50,51).

 
 

Fig. 4. The inhibition of IRS under hyper-activation of mTORC1 due to high energy diet such 
as sugars and refined carbs. The p70S6K plays a pivotal role in inhibiting the IRS that loses 
its capability of glucose transporters transferring to the cell surface (69). 
 

Fig. 4. The inhibition of IRS under hyper-activation of mTORC1 due to high energy diet such as sugars and refined carbs. The 
p70S6K plays a pivotal role in inhibiting the IRS that loses its capability of glucose transporters transferring to the cell surface (69).
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energy mechanism. The mTorc1 has been specifically 
linked with insurgence of both DM1 and DM2 due to 
the blockage of the insulin receptor substrate (IRS), 
the high carbs-sugar prolonged diet interferes to the 
IRS mechanism through the activity of class 1 P13-
kinases (p70S6K) crucial for pancreatic β-cells insulin 
regulation. The high presence of p70S6K inhibits IRS 
to transfer the glucose transporters on to cells surface 
let glucose molecules free within systemic circulation; 
in response to this event the brain/liver/adipose axis 
force the lipoprotein lipases to decrease and triggering 
the triglycerides increase (67-86) (Fig 4).

The mTORC1-2 is the key in regulating multiple 
aspects of bone and cartilage development with 
mineral addition via specific inhibition exerted on 
MSCs differentiation mechanism. Either hyper-
expression or deletion of mTORC1 via diet mice 
showed a reduced size of limb bud cells and impaired 
chondrogenesis from the MSC progenitors (85,86). 
Evidence is quite clear in showing the involvement of 
mTORC1-2 within a wider mechanism constituted by 
a complexity of hormones, growth factors, proteins 
and immune signaling pathways. The crosstalk 
takes place at several level and within different 
modalities, the relation of androgen-receptor and 
mTOR is mediated by testosterone availability; the 
IGF-1activates mTORC1-2 signaling to stimulate 
osteoblast differentiation of bone marrow MSCs, 
mTORC1 systematically mediates the Wnt osteogenic 
activity through the activity on glutamin catabolism 
and IRS 1 and 2 which sequentially promote the 
expression of protein anabolism gene essential in 
MSCs differentiation to osteoblasts (Fig. 5-6). Of note 
the bone morphogentic protein 2 (Bmp2) a protein 
extremely important in bone formation is partly 
activated in mTORC1-dependent manner, whereas 
significant is the involvement of the mTORC2 in bone 
formation by promoting osteoclastogenesis that takes 
place by modulating the expression of Rankl (87-99). 

Additionally, the mTOR’s crosstalk with hormones 
like the GLP 1-2 also play a crucial position. The GLP 
1-2 belongs to the incretin hormone axis released in 
response to food intake by the L cells through the 
proglucagon processing in the upper part of intestines 
(93). Food intake, peptide and CNS involvement 
through vagal nerve innervation control the GLP-

place in the post-translational activation of vitamin 
K-dependent (VKD) phase where are involved proteins 
in charge of the enzymatic conversion of Glu residues 
into γ-carboxyglutamate (Gla) residues. The VKORC1 
is in charge conclude the cycle by reducing the K>O to 
K and KH2, to ensure the efficient reuptake of vitamin 
to lead the necessary following sequences of γ-glutamyl 
carboxylation (57,58).

Vitamin K may act as ligand of the nuclear 
receptor for Steroid and Xenobiotic Receptor (SXR) 
(Pregnane X Receptor, PXR, murine homolog). Kato 
and colleagues showed that SXRs/PXRs are expressed 
in osteoblasts and it is activated by vitamin K that in 
turns up-regulate gene expression such as tsukushi 
(Tsk), matrilin-2 (Matn2) and CD14 involved in bone 
morphogenetic and formation (Fig. 3). 

The Tsk gene was showed to be important in 
collagen-accumulating mechanism, the Matn2 is 
involved in formation of extracellular matrix like 
collagen, whereas CD14 controls both osteoblast and 
osteoclast producing mode through B lymphocyte 
differentiation mechanism, indicating the SXR/
PXR-vitamin K mechanism as key regulator of bone 
homeostasis (56,59,60). 

In addition, vitamin K, and specifically K2 in 
its form of menaquinone 4 and 7 (MK 4-7) were 
confirmed to inhibit osteoclastic bone resorption, by 
suppression of RANKL expression (61-67).

The pathway of cell energy consumption, the 
metabolic role of mTORC1 in insulin resistance 

he bone system in mammalian plays a crucial role 
regulating the whole homeostasis of the body and 
maintains the pH alkaline/acid of organs, tissues and 
cells. As mentioned above, in diabetic individuals 
the bone regenerative mechanism and homeostasis 
is generally compromised following a chronic 
accumulation of toxic oxidative derivatives within 
the intracellular compartment such as the advance 
glycation end-products [AGEs] that contribute to 
bone fragility and tissue deterioration. This activity 
is mainly based on two molecules, the mTORC1 and 
2 (mammalian target of rapamycine complex 1 and 
2) which are protein complex in charge of osteoblast 
growth and proliferation and act as cell sensors 
playing an active part in the control for the cellular 
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difficult to correctly understand the mechanism. 
One of the issues is mainly related to the different 
biology of mammals and humans which show the 
insulin, IGF-1 and IGF-2 in different tissues and 
molecular signaling pathways. Mutated mice for 
instance like the FIRKO mice, in which the insulin 
receptor was ablated in fat tissue, showed to live 
longer. FIRKO mice reduced fat mass and lessened 
age were concomitant factors related to loss of insulin 
sensitivity. It should be noted that the expenditure/
need of calories and energy supply in rodents and 
small mammals with fast metabolic rate is extremely 
high, traits that are extremely different from those in 
humans (104-110).

In humans, any deficiencies in the insulin signaling 
pathway lead to insulin resistance and diabetes (111, 
112). However, in the Laron syndrome where there 
are specific defects in the growth hormone-GH/IGF-
1 signaling mechanism associated with high risk of 
cardiovascular disease and obesity, the patients do 
not develop DM2, condition which seem to have 
a sort of protection against cancer and show quite 

1 secretion. The intracellular signaling pathway by 
which all this process takes place and is synchronized 
still remaining unclear, however we may suppose 
that L cells may respond in coordination with GLP-
1 through mTOR and the presence of the complex 
net of different hormones like leptin, ghrelin, insulin, 
androgen hormones and estrogen. In fact, gastric 
mTOR changes affect negatively the expression and 
secretion of ghrelin and nesfatin-1/nucleobindin 2 the 
latter well known as cancer cell migration factors, 
compromising glucose homeostasis and food intake 
(93, 100-102).

The IGF/GH and TP53 signaling pathways converge 
upon the glucose/energy mechanism, a possible key 
to understand bone health and longevity?

Those invertebrate species that has maintained 
insulin and insulin-like growth factor (IGF) signaling 
(IIS) pathway during their evolutionary process 
manifest a better control of their longevity. However, 
mammals have a more complicated system that 
is different one to another that makes even more 

 
 
Fig. 5. The diabetes effects on bone. The glucose and insulin metabolism indirectly alter 
skeletal muscle signaling, which in turns induce accumulation of AGEs subverting the 
collagen cross-linking with the impairment on bone remodeling. The glucose/insulin 
metabolic impairment to the bone is also weakened as the microenvironment signaling 
pathways are engulfed or mismatching. The changes in bone microenvironment directly 
impact on MSCs differentiation path to osteoblast resulting in decreased bone formation with 
higher bone resorption rate with an increased risk of fractures (103). 
 

Fig. 5. The diabetes effects on bone. The glucose and insulin metabolism indirectly alter skeletal muscle signaling, which 
in turns induce accumulation of AGEs subverting the collagen cross-linking with the impairment on bone remodeling. 
The glucose/insulin metabolic impairment to the bone is also weakened as the microenvironment signaling pathways are 
engulfed or mismatching. The changes in bone microenvironment directly impact on MSCs differentiation path to osteoblast 
resulting in decreased bone formation with higher bone resorption rate with an increased risk of fractures (103).
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may suggest a clear low expression of specific genes 
involved in mitochondrial ATP regulation it definitely 
confirms the strict association between DM2 and 
healthy bone homeostasis. In fact, mitochondrion 
serves as energetic control unit of many catabolic 
and anabolic pathways essential in cell maintenance, 
activity, proliferation and signal transduction through 
ROS generation (119-123). 

Mitochondria due to their deep involvement into 
the energy-metabolic activity like ATP production 
consume the highest amount of cellular oxygen and, 
of this a consistent part is used for the production of 
ROS as a by-product of oxidative phosphorylation. 
In humans and in mammals in general, low calorie 
consumption showed to reduce the energy outflow 
with a sensitive saving of oxidative stress and less ROS 
which in turns improves body energy efficiency use 
and muscle mitochondrial function (122-126) (Fig. 6).

Telomere/telomerase, energy consumption, inflammation 
and immune responses towards infectious diseases like 
COVID-19, HVB and HIV 

Saeed and colleagues were able to confirm that 
telomerase over-expression enhanced BM-MSC 
differentiation to osteoblasts either in vitro or in 

a significant longevity (113, 114). Intriguingly, the 
presence of single nucleotide polymorphism (SNP) 
was detected in the IIS genes and this was a common 
pattern of longevity across diverse cohorts. In a group 
of centenarians in Italy it was seen a common pattern 
contradistinguished by a low level of IGF-1 in plasma 
and linked with a specific genotype combination 
at IGF-IR and PI3KCB gene level (14, 114-116). 
The most interesting findings come from Dato et al, 
the team was able to detect repair mechanism shared 
by specific genes, the TP53-DNA repair pathway/
TXNRD1-pro-antioxidant pathway and TP53-DNA 
repair pathway/ERCC2-DNA repair pathway (92, 
117). The TP53 is a very well-known protein that plays 
a key role in DNA damage response safeguarding 
tissues, organs in a conservative/regenerative mode 
by keeping stem cells pool in stand-by position whilst 
exerting a powerful anticancer in mediating the DNA 
repair through the pro-antioxidant pathway or by 
inducing apoptosis (117).  

The interesting fact is that mTOR, TP53, IGF1-
2, GLP-1, testosterone, estrogen, progesterone all 
seems to share some sort of mitochondrial relation. 
Whereas any impairments on this relation definitely 
contribute to insulin metabolic dysfunction that also 

 
 
Fig. 6. A low insulin drive may be associated with metabolic rate, low grade inflammation and 
cellular stress responses (118). 
 

Fig. 6. A low insulin drive may be associated with metabolic rate, low grade inflammation and cellular stress responses (118).
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(hTERT) that amplifies telomeric DNA repeats, 
allowing the cells to escape from apoptosis. The 
authors suggested it may occur during the very first 
stage of cancer development in which carcinogenic 
mutation take place in precursor somatic cells with 
long telomeres, cells that are constantly target of 
pro-inflammatory cytokines and NF-kB. In addition, 
long telomeres provide affected neo-cancerous cells 
enough replicative potential to avoid any-checkpoint 
that may inhibit the re-activation of telomerase (136) 
[111]. It follows that telomere length is not always 
linked to cell senescence and telomerase activity, 
telomeres steady shorten during the lifetime but the 
length is also subject to persistent fluctuations of 
reductions and repairs, suggestive of an individual’s 
present condition during daily life.

These observations provide support for the 
hypothesis of a potential metabolic effect of many 
diseases that are of great threat nowadays, such 
as COVID-19, HIV or HBV, far beyond the well-
recognized stress response associated with severe 
illness. However, whether the alterations of glucose 
metabolism and immune responses that may occur 
with a sudden onset in severe COVID-19 for 
instance may persist or remit when the infection 
resolves is unclear. Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), this virus 
is able to bind to angiotensin-converting enzyme 2 
(ACE2) receptors, which are expressed in different 
metabolic organs and tissues, including pancreatic 
beta cells, adipose tissue, the small intestine, bone 
and the kidneys. It follows that is plausible that 
SARS-CoV-2 may trigger multiple alterations 
in glucose metabolism that could complicate the 
pathophysiology of preexisting metabolic diseases 
or lead to new degenerative mechanisms in multiple 
sites brain, lungs, heart, vessels and bones.

How frequent is the phenomenon of new-onset 
diabetes, osteo-decay and immunity unbalance it 
may refer to definitive telomere length reduction or 
uncontrolled telomerase? Do these patients remain 
at higher risk for any other type of infection and 
metabolic disorders? In patients with preexisting 
metabolic comorbidities such as hypertension, CVD 
and DM, do Covid-19, HBV or HIV change the 
underlying pathophysiology and the natural history 

vivo. However, telomere and telomerase activity 
are very susceptible to inflammatory process typical 
of metabolic disorder due to fat accumulation and 
insulin resistance seen in DM 1 and 2, CVD and 
Kidney disorders. The telomere and telomerase are 
therefore highly sensitive to chronic hyperglycemia 
and nutritional overload (126-128).

Different are the pro-inflammatory mediators that 
play a ground role in this condition, for instance the 
transcription factor NF-κB that is strictly connected 
with pattern recognition receptor (PRR) signaling 
and inflammation and patients with DM2 showed a 
high level of NF-κB, that in turns was identified as 
key player in the telomere complex (128, 129). 

This abnormal condition is a constitutive part of 
reaction loop contradistinguished by high level of 
oxidative stress, an over-expression of the protein 
kinase C pathway (which negatively impact on 
mitochondria) and, a high ROS expression that 
keep constantly active pro-inflammatory cytokines. 
The close relation of DM and telomere shortness, 
the high presence of inflammatory agents, the 
subversion of mitochondria activity and the high 
expression of ROS are intricate portions of a unique 
interrelated signaling mechanism that eventually led 
to the inhibition of the regenerative capacity within 
the BM, in which the MSCs are completely blocked 
to differentiate to osteoblasts (127-129). 

Therefore, shorter telomeres could be seen 
as indicators of serious degenerative patterns 
contradistinguished by faster cell senescence and 
tissue decay, but what about long telomeres? Could 
the long length telomeres indicate an ongoing disease 
as well? For instance, increased level of IL-6 and 
TNF-α which are usually correlated with high levels 
of CRP have seen reliable forecaster in severe and 
dangerous inflammatory and age-related disorders 
they also intensify telomerase activity through the 
NF-κB, STAT1, and STAT2 activation (130-132). 
The telomere length may be suggestive of something 
highly fluctuating contingent to current health status 
of the patient, in which telomere length maintenance 
mechanism and the immune system reciprocally affect 
via telomerase constant adjustments (130, 133-135). 
Furthermore, carcinogenic-malignant changing cells 
like melanoma may show high telomerase activity 
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hematopoiesis and cell/tissue regeneration. The 
recently identified ability of a hypocaloric diet 
on stem cells regeneration mechanism to control 
mitochondria consumption of extra-energy and 
ROS overload may lead to significant progress 
in developing strategies of treating degenerative 
immune/metabolic senescence in a wide range of 
human diseases like DM and bone decay. Together, 
these outcomes emphasize the importance of 
detecting earlier inflammatory responses that could 
take place in the gut microbiome which led to 
dysbiosis as a major driver of immune deterioration 
and senescence advancement as optimal condition 
for pathogen up rising. These outcomes have also 
clearly confirmed the presence of a bone-gut-kidney-
heart-CNS-Immunity crosstalk, suggesting that the 
ageing process is a multi-factorial mechanism in 
which each single component regulates whilst is 
being regulated. 
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