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 Intestinal barrier dysfunction initiated by various 
etiologies is a main contributing factor in several 
pathological conditions involving the gastrointestinal 
tract (1). A breakdown or impairment of the epithelial 
barrier has been implicated as a critical determinant 
in the predisposition to intestinal inflammation and 

a number of gastrointestinal diseases including 
inflammatory bowel disease and food allergy (2). 
While increased intestinal epithelial permeability can 
be a consequence of disease exacerbation, clinical 
evidence suggests that it may be a primary etiologic 
factor predisposing to disease development (3).
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Increased intestinal permeability due to barrier dysfunction is supposed to cause several gastrointestinal 
diseases. We have previously demonstrated that a single β-carotene (BC) dose protects against increase in 
anaphylactic response in β-lactoglobulin (BLG)-sensitized mice with no effect on the epithelial permeability 
and weak recovery of villi length. Utilizing the same murine ex vivo intestinal model, the aim of this study was to 
investigate the effect of different BC doses on BLG-mediated intestinal epithelial barrier disturbances. Jejunum 
was harvested from BLG-sensitized mice pretreated with either one of three different doses of BC (5, 10 and 20 mg/
kg body weight) and mounted on Ussing Chambers. Transepithelial electrical resistance (TER) and short-circuit 
current (Isc) were recorded as indicators of intestinal epithelial barrier function. Histopathological analysis of 
the intestine was carried out for the control and experimental mice. TNF-α and IL-6 levels were determined in 
serum using ELISA, and the analysis of antioxidant activity was performed for reduced glutathione (GSH) and 
thiobarbituric acid reactive substances (TBARS). BC was capable of enhancing the intestinal barrier function, 
as indicated by the increased TER and the decreased Isc. Intestinal damage characterized by the shortening of 
villi and infiltration of intestinal lymphocytes was significantly reversed by BC pretreatment. Such effects of BC 
were accompanied by a reduction in the levels of IL-6 and TBARS and an increase of GSH. TNF-α levels were 
reduced only at the lowest BC dose. These findings may encourage the use of BC-based therapies for controlling 
the breakdown of the intestinal barrier in vivo. 
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Experimental protocol
 At 4 weeks of age, mice were randomly divided 
into four groups of ten animals each: one control group 
(Vehicle) and three experimental groups (5BC, 10BC and 
20BC, respectively). The experimental groups received 
daily doses of 5, 10, and 20 mg/kg of body weight/day of 
BC (Sigma, France), respectively, for 2 weeks through the 
gavage method; while the control group was given only 
corn oil (Sigma, France) over the same period of time. 
BC was prepared as suspension in 0.2 ml corn oil used 
as vehicle. On the 16th day of the experiment, mice in all 
groups were sensitized intraperitoneally with BLG, as 
described previously (11). During the 50-day experimental 
period, the mice body weights were monitored weekly, 
however, there were no significant differences in body 
weight among the groups in the study (data not shown). 
 It has to be noted that the applied doses exceed the 
levels from any natural sources of BC. Although mice 
readily convert BC to vitamin A, the bioavailability of 
the molecule is low in case of absorption through the 
gut, requiring administration of BC at higher doses than 
physiologically required (12). The experiments were 
made to partly offset this limitation 

Sample collection and processing
 On day 50, the mice were anesthetized by pentobarbital 
sodium (5 mg/kg) and sacrificed. The small intestine and 
the liver were carefully collected. After discarding the 
duodenum and the ileum, the intestine was rinsed with 
phosphate buffer saline (PBS) solution in order to remove 
fecal content. A 5 cm portion of the middle of the intestine 
was placed in cassettes and fixed in 10% buffered 
formalin solution pH 7.2, and the consecutive following 
segment was opened lengthwise along the mesenteric line 
and immediately mounted as sheets in Ussing chambers. 
Serum samples, collected after removing blood cells, and 
liver were stored at -80°C until analysis.
 From each mouse, 4 to 8 pieces of intestine were 
used for ex vivo Ussing chamber experiments as 
previously described by our group (11, 13, 14). Briefly, 
the spontaneous potential difference (PD) was monitored 
via agar-salt bridges connected to calomel electrodes, 
and the appropriate short-circuit current (Isc) was added 
via Ag-AgCl electrodes to maintain a zero PD through 
an automatic voltage clamp device (model VCC MC8; 
Physiologic Instruments, San Diego, CA, USA). The 

 Proinflammatory cytokines such as TNF-α and 
IL-6 play a crucial role in the modulation of the 
inflammatory response in the gastrointestinal tract 
(4). Proinflammatory cytokines can induce the 
endocytosis of tight junction proteins resulting in 
increased intestinal permeability (5). 
 The role of the immune system is likely to 
generate an aggressive physiological response to the 
imbalance induced by the barrier dysfunction (6). 
Increased immune cell activity has been reported to 
result in significant free radical production (7) that 
may negatively impact barrier function. Excessive 
levels of reactive oxygen species (ROS) damage 
cellular proteins including cytoskeletal proteins (8) 
and, ultimately, disrupt gastrointestinal tract barrier 
to increase gut permeability which contributes to 
inflammation in a variety of gastrointestinal diseases 
(9). In this respect, antioxidants may reduce increased 
intestinal permeability by regulating ROS signaling.
 Several studies have shown that diets rich in 
β-carotene (BC) are beneficial to the health of 
humans and may prevent the development of 
inflammation associated diseases. Such an effect 
has been attributed to the various bioactivities of 
BC, including antioxidant activity (10). In an earlier 
publication from our laboratory, we showed that 
supplementation with a single BC dose resulted 
in a significant decrease in secretory response 
with no effect on the epithelial permeability and 
weak recovery of villi length in a murine model of 
food allergy (11). Therefore, in the current study, 
we questioned whether different BC doses could 
improve β-lactoglobulin (BLG)-mediated intestinal 
barrier dysfunction. Towards this goal, we used the 
same in vivo model employed above. 

MATERIALS AND METHODS

Animals and housing conditions
 Female Balb/c mice (16.80±1.95 g, n = 40) were 
maintained at the animal facility of nutrition physiology 
and food safety laboratory-university Oran 1 with a 12-h 
light–dark cycle at 23±2°C and free access to standard 
laboratory feed and water. All experimental procedures 
involving animals were approved by the current Algerian 
legislation covering the protection of animals.
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BC pretreatment at different doses significantly 
inhibited these effects. By increasing concentrations 
of BC, the peak amplitude of ΔTER increased by 
45.27, 61.62 and 59.45%, respectively, and ΔIsc 
decreased by 16.37, 29.16 and 24.92%, respectively.
 The jejunal sheets isolated from vehicle-
sensitized control mice had a basal TER of 
45.38±9.96 Ω.cm2 and a basal Isc of 75.84±11.10 
µA.cm-2. Oral administration of BC at doses of 5, 10 
and 20 mg/kg induced a significant increase in the 
mean value of basal TER (63.82±4.29, 68.98±5.40 
and 68.69±3.30 Ω.cm2, respectively) and decrease 
of Isc (66.33±6.23, 48.33±3.35 and 46.22±4.28 
µA.cm-2, respectively) (Fig. 1 c, f). 

BC ameliorated BLG-induced mucosal damage
 Histological examination of the control group 
showed in most cases preservation of structure 
(Fig. 2 a, b). In the intestinal tissues of BLG-
sensitized mice receiving or not corn oil, there was 
obvious intestinal inflammation characterized by an 
increased lymphocytes infiltration and remarkable 
villus atrophy (Fig. 2 c-f). After two weeks of 
treatment, BC improved the mucosal inflammation 
induced by BLG (Fig. 2 g-i). The decrease of the 
villus length induced by BLG was significantly 
inhibited by BC pretreatment with a maximal 
inhibition at BC 20 mg/kg (Fig. 2j). Villus height 
was increased by 23.54, 30.92 and 62.76% in the 
jejunum of mice receiving 5, 10 and 20 mg/kg of 
BC respectively.
 As shown in Fig. 3a, the serum level of IL-6 
was markedly inhibited by all the investigated 
doses of BC. For TNF-α, only pretreatment of 
BLG-sensitized mice with 5 mg/ml of BC per day 
significantly attenuated the level of this cytokine, 
whereas 20 mg/kg BC significantly increased TNF-α 
content in serum (Fig. 3b). BC treatment significantly 
decreased TBARS levels and elevated GSH content 
in the liver when compared with vehicle-sensitized 
control mice (Fig. 4a, c), whereas there was no effect 
on the serum TBARS level (Fig. 4b).

DISCUSSION

We have previously shown that supplementation 

transepithelial electrical resistance (TER) was calculated 
from the spontaneous PD and Isc by means of Ohm’s law. 
The transmembrane resistance is a sensitive marker of 
the epithelial barrier function, and a decline of the value 
reflects a break in the barrier (15). Isc is considered an 
index of electrogenic ion movement. Changes in TER and 
Isc during experimental conditions were calculated as a 
percentage of corresponding basal values. 
 Intestinal tissues were dehydrated by gradually 
soaking in alcohol and xylene, paraffin-embedded, and 
stained with hematoxylin and eosin for histological 
analysis. Tissues were visualized for changes in intestinal 
pathology. Villus length was measured using an optical 
microscope equipped with a micrometer (Optica Axiom 
5000, Beijing, China). 
 Serum IL-6 (Cat. No. RAB0308) and TNF-α (Cat. 
No. RAB0477) were analyzed by using commercial 
ELISA kits according to the manufacturer’s protocol and 
instruction. The levels of TBARS in serum and liver were 
determined according to previously described methods 
(16). The results are expressed as µmol malondialdehyde 
(MDA)/mg protein. GSH content was determined by 5, 
5’-dithiobis-(2-nitrobenzoic acid) (DTNB) as an indicator 
(17). GSH content was expressed as µmol/mg protein. 
The protein content was determined using Lowry’s 
method measuring absorbance at 750 nm (18). Bovine 
serum albumin was used as a standard.

Statistical analysis
 Results are given as mean±standard error of the mean 
(SEM). Differences between means were determined using 
one-way ANOVA (analysis of variance) with Tukey’s 
post-hoc test using GraphPad Prism 5 software. A p value 
of less than 0.05 was considered statistically significant.

RESULTS

BC improved BLG-induced disruption of barrier 
function ex vivo
 Three concentrations of BC were tested, and their 
effects on transepithelial electrical resistance and 
short current circuit were measured. Isc and TER 
were followed over time.
 Sensitization with BLG induced significant 
decline of transepithelial resistance (Fig. 1a, b) and 
increase of short current circuit (Fig. 1d, e), whereas 
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circuit. An important factor is the poor bioavailability 
of carotenoids, including BC, in case of the 
absorption from the gut requiring the administration 
of BC at higher doses than physiologically relevant 
(12). In our study, three concentrations were tested 
(5, 10 and 20 mg/kg) in order to achieve maximal 
barrier enhancement. The basal values for Isc and 
TER recorded in our experiments are well within 

with a single BC dose resulted in a significant 
decrease in secretory response with no effect on 
the epithelial permeability and weak recovery of 
villi length (11). Therefore, in the present study, 
we investigated whether different BC doses could 
regulate intestinal barrier function in our mouse 
model of food allergy by examining changes in the 
transepithelial electrical resistance and short current 

Fig. 1
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Fig. 1. Effects of BC administration on intestinal barrier function during serosal side exposure to BLG. Murine intestine 
pretreated with either one of three different doses of BC (5, 10 and 20 mg/kg body weight) was placed on Ussing 
Chambers and the TER and Isc were measured over a 10-minute period after BLG (60 μg/ml) challenge. A) Percentage 
(%) of baseline TER values measured at various time points after BLG challenge (**p < 0.01). B) Percentage (%) TER 
decrease after BLG challenge; the decrease in TER is the difference between the peak value after BLG challenge and the 
baseline value. C) The mean value of basal TER of tissues from different groups. D) Percentage (%) of baseline Isc values 
measured at various time points after BLG challenge (***p < 0.001). E) Percent (%) Isc increase after BLG challenge; 
the increase in Isc is the difference between the peak value after BLG challenge and the baseline value. F) The mean value 
of basal Isc of tissues from different groups. Values (means±SEM, n = 10) not sharing a common letter are significantly 
different (*p < 0.05). Comparisons were made between different doses of the same treatment and all doses vs Vehicle

H. GRAR ET AL.



1693Journal of Biological Regulators & Homeostatic Agents
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Fig. 1. Effects of BC administration on intestinal barrier function during serosal side exposure to BLG. Murine intestine 
pretreated with either one of three different doses of BC (5, 10 and 20 mg/kg body weight) was placed on Ussing 
Chambers and the TER and Isc were measured over a 10-minute period after BLG (60 μg/ml) challenge. A) Percentage 
(%) of baseline TER values measured at various time points after BLG challenge (**p < 0.01). B) Percentage (%) TER 
decrease after BLG challenge; the decrease in TER is the difference between the peak value after BLG challenge and the 
baseline value. C) The mean value of basal TER of tissues from different groups. D) Percentage (%) of baseline Isc values 
measured at various time points after BLG challenge (***p < 0.001). E) Percent (%) Isc increase after BLG challenge; 
the increase in Isc is the difference between the peak value after BLG challenge and the baseline value. F) The mean value 
of basal Isc of tissues from different groups. Values (means±SEM, n = 10) not sharing a common letter are significantly 
different (*p < 0.05). Comparisons were made between different doses of the same treatment and all doses vs Vehicle
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epithelial cells and the paracellular permeability 
of the intestinal mucosa (21). The present study 
supports previous observations in that low serum 
carotenoids were suggested as good markers for 
the intestinal barrier function (22, 23). Vieira et 
al. (23) suggested that carotenoids ameliorate 
disrupted intestinal barrier function, via scavenging 
free oxygen radicals or via maintenance of tight 

the range found by our group and other groups 
working with mouse intestine (19, 20). Interestingly, 
all BC concentrations were optimal in terms of both 
elevating TER and decreasing Isc. More specifically, 
TER significantly increased at BC 10 mg/kg. 
TER is one of the commonly useful indicators for 
permeability of intestinal epithelial cells. It could 
reflect the opening of the tight junctions between Fig. 2
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fe 

Fig. 2. H&E staining of small intestine section from a representative mouse from each group. A, B) Naïve mice (X 100, X 
400, respectively). C, D) BLG-sensitized mice (X 100, X 400, respectively). E, F) Vehicle-sensitized control mice (X 100, 
X 400, respectively). G-I) Mice receiving 5, 10 and 20 mg/kg of BC, respectively (X 250). J) Effect of BC pretreatment on 
villus length, measured from villus-crypt junction to villus tip (n = 21). n is the number of tissues studied from four mice 
per group. Values (means±SEM) not sharing a common letter are significantly different (p < 0.05). Comparisons were 
made between different doses of the same treatment and all doses vs Vehicle
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in ameliorating epithelial damage and restoring 
epithelial function in in vivo model. Whereas, in 
a series of experiments aimed at examining the 
impact of BC on oxidative stress-induced cerebral, 
cardiac and hepatic damage, Esrefoglu et al. (28) 
demonstrated that BC could reduce stress-induced 
organ damage by both inhibiting lipid oxidation and 
supporting the cellular antioxidant defense system. 
 To determine whether these BC-induced 
improvements in barrier function were due in 
part to changes in proinflammatory cytokines, we 
examined the BC effects on TNF-α and IL-6 levels. 
As indicated above, BC pretreatment significantly 
inhibited BLG‐induced IL-6 increase in a dose-
dependent manner, while TNF-α levels decreased 
only at BC 5 mg/kg. TNF-α and IL-6 are believed 
to be among the most important in inducing the 
intestinal epithelial barrier dysfunction and leading 
to increased intestinal permeability (29). BC exerted 
an inhibitory effect on proinflammatory cytokines. 
It blocked nuclear translocation of the NF-ĸB p65 
subunit which is correlated with its inhibitory effect 
on phosphorylation and degradation of the NF-
ĸB inhibitor (30). Recently, a major advance in 

junctions and adherence junction proteins. The 
underlying mechanisms for this remain unknown at 
present; however, it is speculated that the beneficial
effects of consumed BC are thought to be due to its 
ability to be converted to vitamin A (24). A study 
by He et al. (25) showed that vitamin A improves 
intestinal epithelial barrier function by enhancing 
the expression of tight junction proteins. Vitamin 
A metabolites could also affect some aspects of the 
epithelial barrier function. Retinoic acid, the most 
biologically active form of vitamin A (26), was found 
to be partially but significantly able to attenuate the 
disruption of barrier properties of MDCK monolayer 
(1). Interestingly, Rybakovsky et al. (27) have 
emphasized the ability of certain micronutrients to 
enhance one or more aspects of tight junction barrier 
function in Gie-3B11 human epithelial cell culture 
model. At concentrations that produced optimal 
improvement of barrier function, retinoic acid 
produced significant decreases in claudins-1 and -2, 
and significant increases in claudins-4 and -5.
 As stated above, villi length increased as treatment 
concentration increased. To our knowledge, our study 
is believed to be the first to show that BC is effective 
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Fig. 3. Effects of BC administration on proinflammatory cytokines. A) IL-6 levels. B) TNF-α levels. Values (means±SEM, 
n = 10) not sharing a common letter are significantly different (*p < 0.05). Comparisons were made between different 
doses of the same treatment and all doses vs Vehicle
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demonstrated that BC could reduce stress-induced 
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supporting the cellular antioxidant defense system. 
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part to changes in proinflammatory cytokines, we 
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As indicated above, BC pretreatment significantly 
inhibited BLG‐induced IL-6 increase in a dose-
dependent manner, while TNF-α levels decreased 
only at BC 5 mg/kg. TNF-α and IL-6 are believed 
to be among the most important in inducing the 
intestinal epithelial barrier dysfunction and leading 
to increased intestinal permeability (29). BC exerted 
an inhibitory effect on proinflammatory cytokines. 
It blocked nuclear translocation of the NF-ĸB p65 
subunit which is correlated with its inhibitory effect 
on phosphorylation and degradation of the NF-
ĸB inhibitor (30). Recently, a major advance in 

junctions and adherence junction proteins. The 
underlying mechanisms for this remain unknown at 
present; however, it is speculated that the beneficial
effects of consumed BC are thought to be due to its 
ability to be converted to vitamin A (24). A study 
by He et al. (25) showed that vitamin A improves 
intestinal epithelial barrier function by enhancing 
the expression of tight junction proteins. Vitamin 
A metabolites could also affect some aspects of the 
epithelial barrier function. Retinoic acid, the most 
biologically active form of vitamin A (26), was found 
to be partially but significantly able to attenuate the 
disruption of barrier properties of MDCK monolayer 
(1). Interestingly, Rybakovsky et al. (27) have 
emphasized the ability of certain micronutrients to 
enhance one or more aspects of tight junction barrier 
function in Gie-3B11 human epithelial cell culture 
model. At concentrations that produced optimal 
improvement of barrier function, retinoic acid 
produced significant decreases in claudins-1 and -2, 
and significant increases in claudins-4 and -5.
 As stated above, villi length increased as treatment 
concentration increased. To our knowledge, our study 
is believed to be the first to show that BC is effective 
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Fig. 3. Effects of BC administration on proinflammatory cytokines. A) IL-6 levels. B) TNF-α levels. Values (means±SEM, 
n = 10) not sharing a common letter are significantly different (*p < 0.05). Comparisons were made between different 
doses of the same treatment and all doses vs Vehicle
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understanding the anti-inflammatory activities of 
BC was made by the work of Li et al. (31). They 
reported that the anti-inflammatory effect of BC is 
achieved by inhibiting multiple signaling pathways, 
such as JAK2/STAT3, NF-κB and JNK/p38 MAPK 
but not ERK1/2. Our results revealed that BC at dose 
of 20 mg/kg per day in the given model, and using 
the described protocol, increased TNF-α content in 
serum. Due to the complexity of the immune system 
and response, the anti-inflammatory effect of BC 
requires further investigation in our future study.
 It has been postulated that the role of BC as 
an anti-inflammatory agent may be due to its 
capacity to scavenge ROS and may be attributed 
to the electrophilicity of ROS-induced carotenoid 
intermediates (32). Given this possibility, we felt it 
necessary to examine the antioxidant redox activity 
of BC. Thus, we assessed TBARS levels as a marker 
of oxidative stress. In our study, BC significantly 
decreased the TBARS content in the liver. The 
inhibition of oxidative stress was reportedly closely 
related to the improvement in the non-enzymatic 
and enzymatic antioxidant status. To our knowledge, 
GSH is one of the most important non-enzymatic 
antioxidants (33). As alluded to above, the GSH 
levels were significantly restored in BC-treated 
mice. The activity of GSH is quite important for 
immunological functions. In an in vitro cell culture 
model using the human alveolar macrophages, it was 
shown that the production of TNF-α, IL-6, and IL-8 
was inhibited by addition of GSH to the medium 
(34). In addition, chronic depletion of mucosal GSH 
by buthionine sulfoximine, a specific inhibitor of 
glutamate cysteine ligase, has recently been shown 
to cause severe degeneration of epithelial cells from 
jejunum and colon, which was prevented by oral 
GSH or GSH monoester (35).
 On the basis of the results discussed in this study, 
we believe that BC improved BLG-induced intestinal 
barrier disruption, through reducing epithelial 
permeability, decreasing intestinal mucosa atrophy, 
modulating the cytokine levels, and enhancing 
intracellular antioxidative protection. Further studies 
in this domain, examining different carotenoids, 
and perhaps mixtures representing more natural 
conditions, are warranted.
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Fig. 4. Effects of BC administration on the antioxidant 
status of BLG-sensitized mice. A, B) TBARS levels in the 
liver and the serum, respectively. C) Hepatic GSH content 
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doses of BC. Values (means±SEM, n = 10) not sharing 
a common letter are significantly different (*p < 0.05). 
Comparisons were made between different doses of the 
same treatment and all doses vs Vehicle
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